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Abstract-A hot granular material is cooled already during filling into a cylindrical container. The rate 
of heat lost through the shell depends on the materials and temperatures involved, the geometry of 
the system as well as the filling rate. Due to the moving boundary there is no straightforward solution 
for the temperature distribution available. However, from a model based on the principle of quasi- 
stationary state the charge temperature and the rate of heat loss can be calculated. The theory is 
applicable also to viscous liquids with negligible internal convection. The results agree well with 

experimental findings and two industrial applications are discussed. 

NOMENCLATURE 

average size of granulate [ml; 
heat-transfer coefficient [Wm-’ K-r]; 
total height of silo [m]; 
thermal conductivity [Wm-r K-r]; 
heat flux [kW] ; 
total heat loss [kWh]; 
radial coordinate [ml; 
radius of inside shell surface [m]; 
time [s] or [h]; 
total filling time [h]; 
temperature [“Cl; 
genuine filling temperature [“Cl; 
overall heat-transfer coefficient at the wall 
[Wm-‘K-l]; 
filling velocity [ms - ‘1; 
silo capacity [m”]; 
axial coordinate in moving, fixed coordinate 
system [m] ; 
filling height from bottom to cone base [ml; 
thermal diffusivity [m’s_‘]; 
shell thickness [m]; 
mean density of granulate [kgm-3]. 

Dimensionless quantities 

A, = vR/or, velocity parameter; 

B, coefficient; 
Bi, = UR/k, Biot number; 

Cl, Cz, constants; 
Fo, = a/R’, Fourier number; 

JO, Jl, Bessel functions; 

N, number of time intervals; 

6, = za/(vR2), depth from cone base; 

i, = zv/ot, axial coordinate; 

0, = (T- T,)/( Tf - T,), temperature; 

2, characteristic value; 

P? = r/R, radius. 

Subscripts 

4 ambient; 

& filling; 
i, j, n, general integer ; 
W, wall. 
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1. INTRODUCTION 

VARIOUS process schemes in chemical engineering in- 
volve a temporary storage of material in cylindrical 
containers or silos. The main purpose is either to 
smooth a fluctuating flow rate between two consecutive 
processes or to have a buffer volume available in case 
one of the earlier process stages breaks down. Usually 
two containers in parallel are provided so that material 
can be drawn from one of them while the other one 
is being filled. For small and short fluctuations a single 
container may be adequate. As most processes are 
operated above surrounding temperature the largest 
rate of cooling will occur during filling. Depending 
on the requirements of the following process stage this 
effect may be desirable or not. In the former case the 
storage device should simultaneously be designed as 
an effective cooler whereas in the latter situation one 
would try and minimize the heat loss. 

An additional problem arises with the structural 
design of large silos. Apart from static stresses one has 
to consider thermal stresses due to different tempera- 
tures on either side of the shell. At any fixed height 
below the filling level the two stresses change with 
time, but in different directions. While the static stress 
builds up due to more material being added at the 
top, the thermal stress decreases due to heat being lost 
through the shell. The sum of both stresses will be a 
maximum at some distance below the top, usually not 
at the bottom where the static stress is highest. To our 
knowledge this conclusion is not incorporated in 
common design practice because too little is known 
about the temperature distribution developing in a 
silo. With pre-stressed concrete silos, commonly used 
to store hot cement clinker and similar materials, the 
stress distribution is more complicated, but here as 
well the knowledge of the inside wall temperature as 
a function of time and position is of great importance 
for an economical design of the silo. Experiments [l] 
have shown that the described effect is marked but 
because of the small number of results no general 
conclusions could be drawn, Therefore a more fun- 
damental study had to be undertaken, and the present 
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analysis will disclose all the relevant parameters and 
show how they affect the temperature distribution 

One of the obvious parameters is the volumetric 
filling rate of material. For a given geometry there 
results a certain velocity at which the filling level will 
move away from the bottom of the container. Writing 
down the differential equation in a fixed coordinate 

system we get a two-dimensional unsteady conduction 
problem with a moving boundary. An attempt to solve 
this problem analytically failed and from a study of 

relevant sources [2,3] it seems that a straightforward 
solution with applicable results is not possible at 
present. The idea then is to let the coordinate system 
move with the filling level whereby the time-depen- 
dency is eliminated and the velocity of the moving 
boundary enters the problem as a parameter. The basic 

concept of this method was put forward as a result of 
experimental studies on arc-welding [4], where a point 

source of heat moves along the longer axis of the 
system. It was observed that the temperature dis- 
tribution around the moving source becomes indepen- 

dent of time when the system axis is long enough in 
comparison with the energy dissipated. This implies 

that any reflection from the boundaries of the system 

due to rapid penetration of heat can be neglected. 
Hence the system does not need to be long in a 
geometrical sense. From the viewpoint of an observer 

moving with the point source there results a steady- 
state conduction problem which for obvious reasons 
is simpler to solve. 

FIG. 1. Silo geometry 

fact that the silo diameter is much larger than the 
average particle diameter of the granulate. It is further 
assumed that the temperature does not vary with 

angular position but only with radius and height. 

On the basis of this so-called principle of quasi- 
stationary state the general theory of moving heat 
sources was analyzed in detail [5] but mainly with 

the application to welding processes in mind. For this 
reason the analytical results cannot be applied to the 
problem described here. The only case of a cylindrical 
system being studied was that of the temperature dis- 
tribution generated in a gun barrel by firing a bullet [6]. 
However, due to the boundary conditions this problem 

is mathematically completely different from ours al- 
though they both employ the same principle. 

As a consequence we find it necessary to develop the 
solution for the outlined class of problems from the 
basic differential equation. Physical modelling will be 
used frequently in order to obtainsimple and applicable 
results. The latter are illustrated in the discussion of 
two common industrial applications. 

2.1. Direct analysis 

Under these assumptions the temperature in a 
volume element of stored material is described by the 

Fourier equation 

3T a=T 1 aT a=T 
--=a g+;dr+>7 
at ( 1 > (1) 

where I and Z are the coordinates shown in Fig. 1. The 

boundary conditions on T express the symmetry in the 
centre and the continuity of heat flux at the wall 

dT - 
ar ,=() = 

0 

2. PROBLEM AND MATHEMATICAL SOLUTION 

In order to stress the main features of the method 
we restrict ourselves to the treatment of granular 
material and do not consider the storage of liquids. It 
turns out that the latter can be analyzed in the same 
way but more easily because of the simpler geometry. 
Referring to Fig. 1 we are dealing with a cylindrical 
shell of up to 30m in diameter and 50m in height 
into which the material is continuously filled over a 
period of up to 25 days. The physical properties of the 
charge are taken as independent of the temperature 
and we treat the stored material as a continuum using 
the mean properties throughout. This is justified by the 

Here k is the effective thermal conductivity of the 
granulate for which correlations are available else- 
where [7]. U is the overall heat-transfer coefficient on 
the boundary which for a packed bed can be written as 

and 

It has been shown [S] that in the region of half a 
particle diameter from the wall the effective conduc- 
tivity drops to about half its bulk value. 

The boundary conditions on I are not as easily 
specified. At the surface of the filling cone the material 
will usually be at filling temperature TT because the 
air above the cone will soon be close to Tr as well. 
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However, every material develops a different cone 
shape and in order to keep the number of parameters 
small we reduce the constant temperature on the cone 
surface to a temperature profile at constant height z. 
slightly below the circular base of the cone. Obviously 
a particle near the wall is cooled faster than one in 
the central region. The latter, on the other hand, has 
spent more time in the silo until it reaches the same 
absolute height as the wall particle. Depending on the 
thermal properties ofthe system there will consequently 
develop a certain temperature profile at jo. This model 
is illustrated in Fig. 2 and in order to simplify the 
analysis a constant temperature Ts at -;. is assumed. 
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coordinatesystem moves upwards at the filling velocity 
v which generates the following transformation 
equation 

The new axial coordinate is a combination of the two 
previous variables Z and t and can be interpreted as 
the age of a particle in the silo or, simultaneously, its 
depth from the surface. Apparently z is undefined for 
vt < 2, which would refer to a particle not yet added 
to the silo. Rewriting the time derivative of the tem- 
perature for a point at radius r and depth z we obtain 

DT ZT iiT 
-= 
Dt at+7 z 

T 

T; 

Tf 

t 

wmg cone 

FIG. 2. Model for elimination of filling cone. 

As is shown later any other profile could be used as 
well. The boundary condition becomes 

Tlf= r,(r, = Ts = constant. (5) 

The other condition at Z = 0 as well as the initial con- 
dition are not discussed here because they will take a 
different form in the final analysis. As can be seen from 
Fig. 1 their specification would need some more sim- 
plifying assumptions. However, it is concluded from 
equations (1) and (5) that even if a two-dimensional 
series solution were obtained the coefficients become 
time-dependent because they have to be evaluated from 
equation (5). Due to this complication the direct way 
of solving the problem had to be abandoned. It remains 
doubtful whether a straightforward analytical solution 
is at all possible without further simplification. 

2.2. Model 
Following the introductory discussion we now move 

the coordinate system into the plane ?o(t) which is 
indicated in Fig. 1. With the filling cone being 
eliminated in the same way as before the upper 
boundary surface at TJ may be seen as a source of heat 
such that the material in the source plane undergoes 
a step change to Tf. This rigid boundary condition 
effectively insulates the behaviour in the solid bulk of 
the silo from that in the only theoretically existent 
section above the source plane. The origin of the new 

With the assumption that the temperature in the new 
coordinate system is independent of time equation (1) 
changes to 

d2T 1 dT d2T v c?T 
F+;Sr+s-&x=o. ,- 

Hence, the quasi-stationary state, referred to earlier, is 
mathematically expressed by 

ST 
- = 0. at 

The conditions under which this assumption holds have 
been discussed before and it seems that for the appli- 
cations in mind the quasi-stationary state is justified. 
Only for an extremely small filling velocity together 
with a very high thermal diffusivity of the charge the 
results will be of an approximate character. 

The boundary conditions on r remain unchanged 
whereas those on z now become simpler than before. 
At the top we have 

TIz= O,r = T, = constant (5a) 

and the model automatically fixes the second boundary 
condition 

~I,+,,, = constant = T,. (9) 

Firstly it is necessary to treat the stored material as a 
semi-infinite cylinder or else we would not comply 
with the assumption of no reflection. But apart from 
that equation (8) cannot be solved with a boundary 
condition that specifies the temperature at the time- 
dependent depth 50(t). Consequently the solution will 
be an approximation for the early stage of filling. The 
accuracy obviously depends on the system parameters 
but a qualitative estimate indicates that the approxi- 
mate nature of the results may range up to a filling 
height of only 20%. The effect of the simplification 
will in most cases slightly under-represent the heat loss 
during filling, yet will hardly affect the determination 
of critical stresses in the shell. These conclusions should 
be borne in mind whenever a high accuracy in the 
results is required. 

2.3. General solution 
In order to develop the results in a most general form 

the following dimensionless variables are chosen: 



710 J. KERN and J. 0. HANSEN 

The differential equation thereby becomes 

=o, (84 

where the dimensionless parameter A = uR/x is intro- 

duced. The boundary conditions are 

(24 

(V 

8P 
= -BiV, (34 

,,=1.: 

(II,,; = 1 (5b) 

and 

01,,;_, = 0. Pa) 

This system can be solved by separation of variables 
and the details of the solution are found in the Appen 
dix. After insertion of the four boundary conditions one 

obtains 

x exp[(l -&1+4i.~/A2])i/2] . (10) 
i 

The characteristic values 3,,, are the roots of the trans- 
cendental equation 

n”J*(fL) 
------Bi=O. 
J&) 

(11) 

The temperature distribution in the silo thus depends 
on the Biot number and a velocity parameter A. 

However, for practical applications this latter par- 
ameter can be included in the axial coordinate so that 
the solution becomes simpler. With the low thermal 
diffusivity of all granular materials the value of A will 
usually lie between lo2 and 103. Then the following 
binomial approximation is justified : 

[ 1 - j( 1+41,2/A’)] 2 - 2iLi/A2. 

Introducing a new dimensionless depth S = z’ ct/(uR2) 

we rewrite equation (10) to get 

exp( -;,‘S) (12) 
I 

RESULTS 

The nature of 6 indicates that, with an approxi- 
mation, the effect of doubling the filling velocity is to 
double the depth at which a certain temperature is 
observed. This is not surprising because it is merely 
the time spent in the silo which has been conserved. 

The results obtained from equation (10) show that with 
the achieved accuracy on the characteristic values 2, 
velocity and depth are perfectly interchangeable. 

As the filling velocity is assumed to be constant the 
new variable describes how at a certain time the tem- 
perature changes with depth. Simultaneously this vari- 
able determines the temperature change with time at 
a certain absolute height. With 

we define the Fourier number as 

t.r 

F”-6=F 
and equation (12) is represented as 

Here ?i is an absolute height, measured from the 
bottom of the silo and equation (12a) is valid from the 
time when the charge, at temperature T,, passes the 

level 5i. 
Although the form of equation (12) is analytic it may 

be useful to discuss some of the important results. The 

major problem encountered in the computation was 

the extraction of the roots A.. The convergence of the 
series in equation (10) is dictated largely by the ex- 

ponential term. As S usually is a small quantity up to 
50 roots have to be evaluated from equation (11). This 

ensures that at a depth of one radius the calculated 
temperature is accurate to 0.5%. Using a Newton- 

Raphson search procedure the 1. can be evaluated 
for different Biot numbers. However, the function 
i,, J1 &,)/Jo(&) has discontinuities at the zero values of 
Jo(&) so that it becomes difficult to evaluate the roots 
at Biot numbers larger than 40. If these were ever 
needed for a practical problem, one would have to 
adjust the accuracy criterion. 

I.0 

06 

8 

0.4 

0 0.2 0.4 0.6 0.8 IO 

P 

FIG. 3. Radial temperature distribution at variable depth 
or time. 

The radial temperature distribution at various depths 
and for a typical Biot number of 18 is shown in 
Fig. 3. One realizes that only a large distance from 
the filling level does the temperature in the centre start 
to drop. This agrees with the observation [l] that some 
of the material drawn from a silo two weeks after filling 
is still at the original filling temperature. As explained 
previously this figure also represents the radial tem- 
perature distribution at a certain height for various 
time intervals. 
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FIG. 4. Radial temperature distribution at various ratios of FIG. 5. Variation of inside wall temperature with time or 
bulk to wall resistance. depth for different Biot numbers. 

The influence of the Biot number on the temperature 
profile is illustrated in Fig. 4, where a constant dimen- 

sionless depth 6 = 0.01696 was chosen. Due to the low 
thermal conductivity of the charge a variable wall 
transfer coefficient U affects mainly the material close 
to the wall, which is physically reasonable. In particular 

the wall temperature itself changes markedly and these 
results may help in an optimum structural design of 

a silo. 
From a practical point of view only the knowledge 

of the wall temperatures is really interesting. For a 
given value of U it allows the calculation of heat losses 
as well as thermal stresses. Therefore Fig. 5 was con- 
structed which shows the inside wall temperature at 
variable depth or time and for different heat loss 
characteristics. It is seen that especially a short time 
after the filling level has passed a certain position the 
wall temperature here decreases sharply with increasing 
Biot number. Once these curves are available it is 

simple to optimize the thermal or structural design of 
a silo and to illustrate this two different examples will 

be discussed. 

4. APPLICATIONS 

As pointed out in the beginning the purpose of this 

study was to provide the background for an economic 
design of a silo. The actual problem may lie in the 
structural design, where the wall thickness is deter- 
mined by the stresses to be taken up, or in the thermal 
behaviour, where, apart from the storage, simultaneous 

I 

ma 

0 0.5 I.0 15 2-O 2.5 

10’8 ( 102Fo) 

cooling may be advantageous or not. It is therefore 

obvious that we look at the developed solution in the 
light of these two features. 

4.1. Inside wall temperature in a reinforced concrete silo 
As a detailed stress analysis is too involved to be 

presented here, we restrict the treatment to the com- 
parison of our analytical results with measurements 
taken on a reinforced concrete silo during filling. 
Generally the moment developed in the wall of a large 
cylindrical container is linearly proportional to the 
temperature difference between the inside and outside 

wall surface. As this moment has to be taken up by 
the shell its thickness will depend on the inside wall 
temperature. If the latter is estimated too conservatively 
a double effect results. Firstly, the shell thickness 
becomes larger than necessary and secondly, as the 
thermal resistance of the wall has a major influence 
on U, a thicker wall gives an even higher wall tem- 
perature which again builds up the moment. Therefore 

a reasonably accurate information on the wall tem- 
perature distribution is important. 

Unfortunately in the experiment [l] some of the 
relevant data are missing and have to be estimated. 
They are marked in Table 1 which shows the completed 

set of data needed for the comparison. The measuring 
points were at a height of 20m from the bottom of 
the silo and the wall temperatures were measured in 
the concrete at 0.035m from the outside and 0.03 m 
from the inside surface. Hence the reported inside wall 

Table 1. Silo data for different applications (* = estimated) 

R H 10-v k lo-3p 1O6a U At 102Fo* Bi (T--T.) Qlt QrS 

Silo [ 1] 15.9 41.9 33.3 0.9* 1.58 0.8 1.8* 336 0.38 30 41.5* - - 
Silo I 2 40 0.503 1.0 1.6 1.0 5.0 24 2.16 10 100.0 1535 1680 
Silo II 4 10 0.503 1.0 1.6 1.0 5.0 24 0.54 20 100.0 768 865 

tAnalytica1 result from equation (14a). 
fNumerica1 result from equation (16). 
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- Theory 
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FIG. 6. Comparison between experiment [l] and theory. 

temperature has to be extrapolated to the radius used 
in the analysis. This is done by employing equation (4) 
and is illustrated in Fig. 6. No record was kept on the 
ambient temperature but the measured temperature 

profiles indicate an ambient temperature of 0°C in the 
first six days followed by a slight drop and after nine 

days another sharp decrease. The time intervals in this 
case refer to the time when the filling level passes the 
height of the measuring points. From the definition of 
the dimensionless temperature it is seen that an in- 
correct ambient temperature can introduce a large error 
in the results. Especially towards the end of the filling 
period where the wall temperature is low a change of 

5°C in the outside temperature may easily result in a 
30% error in the calculated wall temperature based on 
the original outside temperature. Apparently this effect 
is responsible for the poor agreement between exper- 
iment and theory at large time as illustrated in Fig. 6. 
However, the tendency is represented fairly well by 
the theory and it is unfortunate that no other measure- 

ments are reported in the literature. The slightly higher 

wall temperatures measured in the beginning are most 
probably due to the very large radius of the exper- 
imental silo. At time = 0 the material temperature in 

the centre was certainly higher than near the wall, so 
that cooling was partly offset by the higher internal 
energy of the particles in the centre. In addition, the 
temperature at zero time may have been larger than 
the measured one, because measurements were carried 
out only once a day. 

4.2. Heat loss from a byfleer silo 
For the same feed rate and total volume to be stored 

there are various ways to influence the heat loss during 
filling. Changing the shell material or splitting up the 
capacity into two or more silos are possible means, 
but one simple way is to change the height to diameter 
ratio. This latter procedure is illustrated in the following 
example for which the relevant data are listed in 
Table 1. Both silos are made from steel so that the 
wall-transfer coefficient U is appreciably larger than 
for a concrete shell. Height and diameter are changed 
to result in the same capacity for both units. 

With equation (6) the re-transformation of equation 

(12) into the fixed coordinate system yields 

H(p, 2) = 2 f 
i 

BiJo(i,p) 

n=l (i.,2+Bi2)JO(An) 

x exp( -ita, t/R’)exp@zcr. Z/(cP)) 
I 

(13) 

In real variables the total heat loss is then obtained 
from the following equation: 

and with equation (13) one finally gets 

m 
xc “=I L 

1 - (1 - exp( - i~Fo~))/(Fo~ 2.:) 

l,+((&/Bi)’ + 1) I (144 
Once the series is evaluated for various combinations 
of the Biot and Fourier number this result allows one 
to immediately determine the cup mixing temperature 
of the charge after filling. However, the characteristic 

values 1, depend on the Biot number (see equation (11)) 

and the accuracy of equation (14a) depends strongly 
on a correct determination of the 1,. In addition, the 
convergence of the series in equation (14a) is even 
poorer than that in equation (12) so that one requires 
a large number of characteristic values. Their evalu- 
ation becomes tedious for the reasons discussed before 

and an alternative method is suggested which is based 

on the availability of the curves in Fig. 5. 
For a differential area the heat fess is given by 

dq = Ut)(T/- T,)2rcRdZ. (15) 

Once the curves in Fig. 5 are known the integration 

of equation (15) is most conveniently done numerically. 
Subdividing the filling period into N time intervals the 
corresponding average values i7 are taken from the 

curve for the specific Biot number. During the first time 
interval which also determines the first area element 

the heat flux becomes 

In every following time interval the lower heat flux 
from the silo element below has to be added to equation 
(15a). For the data in Table 1 this procedure is illus- 
trated in Fig. 7. The dotted lines near the origin 
indicate that in the beginning of the filling period our 
analysis predicts too little heat loss. Under most 
circumstances some energy is lost through the bottom, 
but usually this contribution becomes negligible after 
a short time. After filling has been completed the total 
heat flux from the silo drops sharply, which is the 
reason for concentrating the effort on the filling period. 

Multiplying equation (15a) by the time interval and 
summing up over the filling period we get the total 
heat loss 

Q = Bik(Tf- x)$ $I [(N-i+l)Qi]. (16) 
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FIG. 7. Heat loss from a silo during filling. 

If the required accuracy is not too high then equation 
(16) enables one to do a quick estimate on the heat 
loss to be expected. Choosing N = 12 for the two silo 
configurations we get a total heat loss of 1680kWh 
for the high silo (I) as compared to 865 kWh for the 
wide one (II). The corresponding results from equation 
(14a) are displayed in Table 1 and are approximately 
10% lower. This is explained by the fact that the 
numerical integration only uses the arithmetic average 
value of the temperature in the time interval chosen. 
For higher accuracy one would therefore have to decide 
on smaller time intervals. 

4. H. Bornefeld, Temperaturmessungen beim Schweissen, 
TZprakt. Metallbearb. 43, 14-18 (1933). 

5. D. Rosenthal, The theory of moving sources of heat and 
its application to metal treatments, Trans. Am. Sot. Mech. 
Engrs 68,849-866 (1946). 

6. D. Rosenthal and R. H. Cameron, Temperature distri- 
bution in cylinder heated by point source moving along 
its axis, Trans. Am. Sot. Mech. Engrs 69, 961-968 (1947). 

7. S. Yagi and D. Kunii, Studies on effective thermal con- 
ductivities in packed beds, A.1.Ch.E. J1 3, 373 (1957). 

8. K. Ofuchi and D. Kunii, Heat-transfer characteristics of 
packed beds with stagnant fluids, Int. J. Heut Mass 
Transfer 8, 749-757 (1965). 

9. R. V. Churchill, Operational Mathematics, 3rd edn, p. 425. 
McGraw-Hill, New York (1972). 

An interesting conclusion from equation (14a) is that 
doubling the silo shell area yields twice the heat loss 
during filling. The result was checked for various other 
combinations of diameter and height and proved to be 
true although we could not find a straightforward 
physical explanation for this effect. Apparently the tem- 
perature profiles developing in the two silos I and II 
are different, but this is probably compensated by the 
different volumes of material undergoing a temperature 
change. However, as this example was only meant to 
illustrate the developed method, the results were not 
followed up any further. 

Solution of the D@rential Equation 

Separation of variables yields two ordinary differential 
equations instead of equation (8a). With 

Q(P, i) = P(P)Z(i) (AI) 

we get 

and 

2 

pdp+dp+L2pp= 0 

dp2 dp 

5. CONCLUSION These are solved to give 

From the discussed examples it is evident that the 
temperature distribution in a charge being filled into a 
cylindrical container can supply valuable information 
about thermal stresses in the shell or heat loss from the 
container. Assuming a pure conduction mechanism 
there remains the problem of incorporating in the 
analysis the moving boundary at the top of the charge. 
This is circumvented by taking a moving coordinate 
system and employing the principle of quasi-stationary 
state established elsewhere. With a further simplifica- 
tion a solution is obtained for the radial temperature 
distribution as a function of depth from the surface or 
time and with the Biot number as a parameter. For 
practical application the inside wall temperature of a 
silo usually is the most relevant information. The latter 
is provided by a single set of curves. 

P = f &Jo(&P) 
“=I 

and 

+C2exp{[1-J(l+41,?/A2)]1/2}. (A5) 

From the boundary condition equation (9a) it follows 
immediately that C1 = 0. Instead of considering the other 
condition equation (5b) directly, we set C2 = 1 and adjust 
equation (A4) to satisfy the source plane boundary condi- 
tion. Equation (Al) thereby becomes 

e(p, 0 = f {B.Jdl.p)ew[(l -Jcl+4u42))1m. 646) 
“=I 

With 

dJo@.p) 
- = -LJt(Lp) 

+ 
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The study was carried out with a granular charge 
in mind but the results also apply to liquids as long as 
internal convection can be neglected. If this is not the 
case the analysis will still supply approximate results. 
An important application, not discussed here, is the 
storage of solutions where undesirable crystallization 
starts below a specific temperature. In general, it is 
concluded that this method could efficiently be applied 
to a large number of problems in chemical engineering 
processes. 
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it is seen that the Bessel solution intrinsically satisfies the Therefore, if the temperature distribution in the source plane 
boundary condition equation (2a) because Ji (0) = 0. with Z = 1 is a given functionf(p) we can write 

Inserting further equation (A6) into equation (3a) we 
obtain f(p) = “ii [&J&p)] 

J 
pf(p)J&p)dp = c B, pJa(lip)Jo(&p)dp. (A9) 

Then by matching terms in the two series and dividing by II “=I J 0 

the common Z.-terms one finds From equation (AS) with n = i it follows that 

in J I (L.) = BiJo(4 (11) 

s 

1 

0 
pf(p)J&.p)dp = &“2:,, [J,,(~.)]‘. (AlO) 

n 
from which the eigenvalues i, are obtained. Finally, the 
coefficients B, have to be determined. The roots of equation For a simple functionf(p) the integral can usually be solved 

(11) have the important property that the set of functions directly. In particular, iff(p) = 1 then 

JoV.ip)> J&i+~p), 

are orthogonal on the interval (0, 1) with weight function 
p [9], i.e. 

s 

1 

0 

(All) 

After rearrangement and using equation (11) the coefficients 
become 

2Bi 
B,, = ._____ __~_~, 

(A,’ + Bi2)J&) 
(A1.2) 

These are inserted in equation (A6) to give the final solution 
equation (10). 

CONDUCTION THERMIQUE TRANSITOIRE DANS LES SYSTEMES CYLINDRIQUES 
AVEC UNE FRONTIERE EN MOUVEMENT AXIAL 

Resume-Un matiriau granuleux chaud est refroidi d&s son introduction dans un r&cipient cylindrique. 
Le flux thermique au travers de l’enveloppe depend des mathiaux en presence et de Ieurs temperatures, 
de la geometric du systeme, aussi bien que de la vitesse de remplissage. Du fait du mouvement de la 
frontiere, il n’existe aucune solution directe de la distribution de temperature. Cependant, a partir d’un 
modtle base sur le principe de l’etat quasi-stationnaire, il est possible de calculer la temperature de la 
charge et le flux thermique perdu. La theorie est egalement applicable a des liquides visqueux avec 
convection interne ntgligeable. Les rbultats sont en bon accord avec ceux fournis par l’experience et deux 

applications industrielles sont discutees. 

INSTATIONARE WARMELEITUNG IN ZYLINDERFGRMIGEN SYSTEMEN 
MIT EINER SICH AXIAL VERSCHIEBENDEN GRENZE 

Zusammenfassung-Beim Fullen zylindrischer Silos mit heissem Granulat kiihlt sich dieses bereits wahrend 
des Fiillvorgangs ab. Der Warmeverlust durch die Seitenwande hangt von den beteiligten Materialien 
und deren Temperaturen ab, aber such von der Geometrie des Silos und der Fiillgeschwindigkeit. Da 
sich die obere Systemgrenze mit der Zeit verschiebt, erscheint eine direkte analytische Losung der 
Warmeleitgleichung fraglich. Basierend auf dem Prinzip des quasi-station&en &stands wird ein Model1 
entwickelt, das die Berechnung der Temperaturverteilung im Silo gestattet. Die theoretischen Ergebnisse 
stimmen gut mit experimentellen Beobachtungen iiberein und sind such auf zahe Fliissigkeiten bei 
vernachllssigbarer Konvektion anwendbar. Zur Veranschaulichung werden zwei industrielle Beispiele 

diskutiert. 

HECTADHOHAPHAfl TEI-IJIOI-IPOBO~HOCTb B I&iJIkIHAPMSECKHX 
CPICTEMAX C I-IEPEMEII.IAIOIIIEfiC% I-IO OCW I-PAHIII.IEfi 

Am10raHiu1 - Foparu8 rpaHynHpoBaHHbrP MaTepwan 0xnaxnaeTcB yxe npu 3arpysKe B Hwnw~Bpu- 
'IeCKEiti KOHTeHHep. Tennoebre IlOTepA Yepe3 CTeHKy 3aBHCRT OT TeMO@HiSUKeCKUX CBOHCTB MaTe- 
pHaJIOB,TeMlTepaTypbI,reOMeTpHPi CUCTeMbI,a TaKxe CKOpOCTH 3arpy3KU. B CHJIy IIOnBHXHOCTH 
rpaHHHb1 OTCyTCTByeT npXMOe IJemeHHe AJIK paCnIX?AeneHHR TeMlIepaTypbI. GAHBKO, C nOMOII&lO 
MOneJtU, OCHOBtlHHOti Ha npHHHUne KBa3HCmHHOHapHOrO COCTOIIHAR, MOXCHO paCCWTaTb TeMnepa- 

~ypy 3arpyxaemro Mawpsiana w aemminy TeUnoBbIx no-repb. Teopwn cnpaBeAmBa TaKxe Am 

CJIy'faR B113KO& WWAKQCTii UpU HaJIEfYHH He3HaWiTenbHOt BHyTpe4SHei-i KOH?eKUHH. TeOpeTmecKHe 

pe3yJIbTaTbICOrJIaCyIOTC5IC3ICCIIepHMeHTaJIbHbIMli. PaCCMaTpHBalOTCKABaCJIq"laSllIpOMbIIlJJIeHHO~O 

I-IpHMeHeHHX. 


